# Pondicherry UDC Exam 2023 solved question paper

1. The radius of the circle
3x2 + by2 + 4bx – 6by + b2 = 0 is
(A) 1
(B) 3
(C)√10
(D) √11
1. If a, b, c are three non-coplanar unit vectors such that a x (b x c ) = b + c /√2 then the angle between a and b is
(A)  𝝅 /2
(B) 3𝝅 /4
(C)  𝝅 /4
(D)  𝝅
1. The minimum value of the function |3-x|+9 is
(A) 0
(B) 3
(C) 6
(D) 9
1. The HCF of 20, 50 and 80 is
(A) 20
(B) 10
(C) 50
(D) 80
1. If the ordered pairs (a + 2,4) and (5,2a+ b) are equal then (a, b) is
(A) (2,-2)
(B) (5,1)
(C) (2,3)
(D) (3,-2)
1. If in ABC, DE||BC AB = 3.6 cm, AC =2.4 cm and AD =2.1 cm then the length of AE is
(A) 1.4 cm
(B) 1.8 cm
(C) 1.2 cm
(D) 1.05 cm
1. The point of intersection of 3x- y = 4 and x +y = 8 is
(A) (5,3)
(B) (2,4)
(C) (3,5)
(D) (4,4)
1. If sinθ =cosθ, then 2tan2θ + sin2θ – 1 is equal to
(A) -3/2
(B) 3/2
(C) 2/3
(D) -2/3
1. The total surface area of a hemi-sphere is how much times the square of its radius
(A) 𝝅
(B) 4𝝅
(C) 3𝝅
(D) 2𝝅

100. If a and b are chosen randomly from set {1, 2, 3, 4} with replacement, then the probability of the real roots of equation
x2 + ax + b = 0 is
(A) 3/16
(B) 5/16
(C) 7/16
(D) 11/16